论著。

病情严重程度评分与降钙素原和白细胞介素 6 在脓毒症预 后的临床研究

邱 添

中山医院青浦分院呼吸科 上海 201700

[摘 要]目的 探讨脓毒症患者的急性生理学与慢性健康状况评分系统 II(APACHE II)和序贯器官衰竭评分(SOFA)与降钙素原(PCT)和白细胞介素 6(IL-6)的相关性以及对脓毒症预后的评估价值。方法 回顾性分析 2013 年 6 月至 2018 年 6 月在中山医院青浦分院住院的 180 名患者。根据患者入院后 28d 生存情况分为生存组 117 例和死亡组 63 例,比较两组间入院 24h 内的 APACHE II、SOFA 评分和 PCT、IL-6 的差异和相关性。将 APACHE II和 SOFA 组成评分组合,PCT和 IL-6 组成生物标记物组合。并比较 APACHE II、SOFA、评分组合、PCT、IL-6 和生物标记物组合对脓毒症患者预后判断的价值。结果 一般资料中生存组和死亡组并发心血管疾病和其他疾病差异有统计学意义(P < 0.05)。两组间 PCT、IL-6 及 SOFA、APACHE II 评分差异均有统计学意义(P < 0.05)。ROC 曲线下面积(AUC)由高到低分别为 PCT(0.888)、IL-6(0.848)、APACHE II(0.851)、SOFA(0.766)。生物标记组合的 AUC 大于评分组合的 AUC。当 PCT 为 11.5ng/ml、IL-6 为 55.5pg/ml、APACHE II 为 21.5、SOFA 为 9.5 时,有最佳判断预后的能力。APACHE II、SOFA、评分组合和 PCT、IL-6、生物标记物组合均呈正相关(P < 0.05)。结论 APACHE II、SOFA、PCT 和 IL-6 能有效地判断脓毒症患者预后情况,且 PCT、IL-6 比APACHE II、SOFA 更具有相关性,生物标记物比评分系统能更好地反应归脓毒症患者的预后情况。

[关键词]脓毒症;降钙素原;白细胞介素 6;APACHE Ⅱ评分;SOFA 评分

[中图分类号]R459.7 [文献标识码]A [文章编号]2095-7165 (2019) 10-001-04

The clinical research of severity score, calcitonin and interleukin 6 in prognosis of sepsis

QIU Tian Department of Respiratory Medicine, Qingpu branch of Zhongshan Hospital, Shanghai 201700, China Corresponding author: QIU Tian

[Abstract] Objective To explore the relationship between the acute physiology and chronic health evaluation \mathbb{I} (APACHE \mathbb{I}) score, sequential organ failure assessment (SOFA) score and calcitonin(PCT), interleukin 6(IL-6), and to explore the value in assessment of PCT and IL-6 in the prognosis of sepsis patients. **Method** 180 sepsis patients were admitted to Qingpu branch of Zhongshan Hospital from June 2013 to June 2018 retrospectively.117 cases was in survival group and 63 cases was in death group according to 28 days outcome in admission. The differences of APACHE II score, SOFA score, PCT and IL-6 were compared between two groups. The differences of APACHE II socre, SOFA score were combined into score combination. PCT and IL-6 were compared in two groups admitted within 24h. APACHE II socre and SOFA score were combined into score combination. PCT and IL-6 were combined into biomarker combination. APACHE II socre, SOFA score, score combination, PCT, IL-6 and biomarker combination were compared between two groups for the value of prognosis in sepsis patients. **Results** Angiocardiopathy and other diseases were significantly different between survival group and death group (P < 0.05). APACHE II socre, SOFA score, PCT and IL-6 were significantly different between two groups (P < 0.05). The rank of areas under the ROC curve(AUC) from high to low were PCT(0.888), IL-6(0.848), APACHE II (0.851), SOFA(0.766). When PCT was 11.5 ng/ml, IL-6 was 55.5 pg/ml, APACHE II score was 21.5, SOFA score was 9.5, they had best ability to judge prognosis. APACHE II socre, SOFA score, SOFA score, PCT and IL-6, biomarker combination were all in positive correlation (P < 0.05). **Conclusion** APACHE II socre, SOFA score, PCT and IL-6 have more relevance than APACHE II socre and SOFA score. Biomarkers may better reflect the prognosis of sepsis patients than scores system.

脓毒症是由感染等因素所诱发、多种炎症介质所介导的全身炎症反应综合征(systemic inflammatory response syndrome, SIRS)。其病情常常进展迅速且预后不良,具有发病率高、病死率高等特点 [1-3]。早期判断脓毒症预后具有重要的临床意义。急性生理学与慢性健康状况评分系统 II 评分(APACHE II)和序贯器官衰竭评分(SOFA)是目前临床上较常用的预后评分系统,常用于脓毒症等感染性疾病,其临床价值已得到广泛的认可 [4-5]。血清降钙素原(PCT)在细菌导致全身炎症反应时,其浓度会急剧升高 [6]。白细胞介素 6(IL-

作者简介: 邱添,男,医学硕士,中山医院青浦分院,呼吸科。

6)作为一种促炎介质,在机体感染时常常升高。大量研究均表明 PCT 和 IL-6 为判断脓毒症预后的重要生物标记物 [7-8]。目前关于 PCT 和 C 反应蛋白(CRP)对判断脓毒症预后的研究较多,但 PCT 结合 IL-6 与 APACHE II 结合 SOFA 评分的研究较少。本研究采用回顾性分析来探讨 PCT、IL-6 和 APACHE II、SOFA的相关性,并比较它们在脓毒症预后评估中的临床价值。

1 对象和方法

1.1 研究对象

选取 2013 年 6 月至 2018 年 6 月在中山医院青浦分院住院的 180 名患者,对其进行回顾性分析。根据患者入院后 28d 是否生存分为生存组和死亡组。入选标准: (1) 诊断标准符合

2001 年国际脓毒症定义诊断标准 [9]; (2) 年龄 \geq 18 岁; (3) 急诊抢救室存活时间大于 24h; (4) 入院 24h 内做 PCT 和 IL-6 检测。排除标准: (1) 入院 24h 内出院患者; (2) 中途放弃治疗患者; (3) 临床资料不完整患者。本研究符合医学伦理学要求,所有治疗经患者或家属知情同意。

1.2 资料收集

所有入选患者均记录(1)一般项目: 姓名、性别、年龄、转归(生存或死亡); (2)临床症状: 主诉、现病史、生命体征; (3)既往史: 烟酒史、基础疾病; (4)实验室检查: 入院 24h 内的血清 PCT、IL-6; (5)评分系统: APACHE II 评分、SOFA 评分。

1.3 统计学方法

采用 SPSS19.0 统计软件进行统计分析,计量资料且服从正态分布的用 $\bar{\chi}\pm s$ 表示,服从偏态分布用中位数和四分位间距表示。计数资料用频数和百分比表示,采用 χ^2 检验或Fisher 精确检验。正态分布且方差齐的生存组和死亡组间计量资料比较用两独立样本 t 检验,方差不齐用 t'检验。采用二元 logistic 回归模型对 PCT 和 IL-6 转化为预测概率 P,记为生物标记物组合,对 APACHE II 和 SOFA 转化为预测概率 P',记为评分组合。用受试者工作特征曲线(ROC 曲线)来比较APACHE II、SOFA、PCT、IL-6、评分组合和生物标记物组合判断脓毒症预后的能力。用 Spearman 相关分析对 PCT、IL-6、生物标记物组合与 APACHE II、SOFA、评分组合进行分析。以 P < 0.05 为差异有统计学意义。

2 结果

2.1 入选流程

2013年6月至2018年6月在中山医院青浦分院确诊为脓毒症患者共742例,经筛选纳入此项研究的共有180例脓毒症患者(图1)。

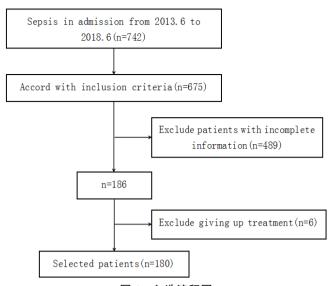


图 1: 入选流程图 Fig.1 Selected flow chart

2.2 基本资料

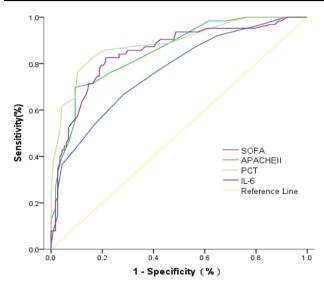
入选本研究的患者共 180 例,年龄 18-85 (54. 32 ± 16.08) 岁,男 101 例(56. 1%),女 79 例(43. 9%)。根据患者入院 28d 后转归情况分为生存组 117 例,死亡组 63 例。脓毒症主要感染部位位于呼吸系统、消化系统和泌尿系统。,最常见感染部位为呼吸道感染(86 例,47.8%)。主要并发症有心血管、中枢神经、肾脏、消化道和内分泌等疾病,最多的并发症为心血管疾病(66 例,36.7%)。在生存组和死亡组对比中,两组并发症在心血管疾病($\chi^2=5.007$,, P=0.025)和其它疾病($\chi^2=3.956$, P=0.047)差异有统计学意义(表 1)。

表 1: 脓毒症患者基本资料 (n,%) Tab.1 Basic information of sepsis patients(n,%)

Table Busic into that of sepsis patients (1978)							
Characteristic	Survival(n=117,%)	Death (n=63, %)	χ^2	Р			
Male	67 (57.3)	34 (54.0)	0. 181	0.671			
Male Infection site	7						
Respiratory system	52 (44.4)	34 (54.0)	1.743	0. 187			
Digestive system	38 (32.5)	15 (23.8)	1.481	0. 224			
Urinary system	18 (15.4)	8 (12.7)	0. 239	0.625			
0ther	9 (7.7)	6 (9.5)	0. 180	0.672			
Past history							
Smoking	34 (29.1)	22 (34.9)	0.656	0.418			
Drinking	18 (15.4)	12 (19.0)	0.396	0. 529			
Complication							
Angiocardiopathy	36 (30.8)	30 (47.6)	5.007	0.025			
Central nervous diseases	10 (8.5)	6 (9.5)	1.428	0. 232			
Kidney diseases	12 (10.3)	8 (12.7)	0. 247	0.619			
Digestive tract diseases	30 (25.6)	22 (34.9)	1.717	0. 190			
Endocrine diseases	16 (13.7)	12 (19.0)	0.900	0.343			
Other diseases	9 (7.7)	11 (17.5)	3. 956	0.047			

2.3 生存组和死亡组检测指标及评分差异性比较

对符合正态性检验的生存组和死亡组检测指标和相关评分做两独立样本 t 检验。结果表明,PCT、IL-6、SOFA、APACHE II 差异有统计学意义(P < 0.001,表 2)。


2.4 生物标记物和评分预测死亡的 ROC 曲线比较 各项的 ROC 曲线面积 (AUC) 由大到小分别为 PCT、

APACHE II、IL-6、SOFA。生物标记物组合 AUC 明显大于评分组合 AUC (图 3)。当 PCT 临界值为 11.5 ng/ml 时,敏感度82.5%,特异度83.5%;当 IL-6 临界值为55.5 pg/ml 时,敏感度82.5%,特异度78.6%;当 APACHE II 临界值为21.5 时,敏感度69.8%,特异度90.6%;当 SOFA 临界值为9.5 时,敏感度66.7%,特异度77.8%(图 2,表 3)。

表 2: 各组评分和生物标记物的比较

Tab.2 Comparison of score and biomarkers in each group $(\bar{\chi} \pm s)$

Parameter	Survival(n=117)	Death (n=63)	t	P
PCT (ng/ml)	8.00 ± 3.74	14.78 ± 3.73	-11. 589	< 0.001
IL-6 (pg/ml)	42.92 ± 23.44	82.59 ± 31.11	-9. 629	< 0.001
SOFA	8.01 ± 2.70	11.06 \pm 3.10	-6.881	< 0.001
APACHE II	16.21 ± 4.66	23.97 ± 5.39	-10.069	< 0.001

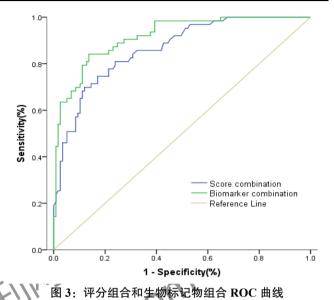


图 2: PCT、IL-6、APACHE || 和 SOFA 的 ROC 曲线 Fig.2 ROC curves of PCT,IL-6,APACHE || and SOFA

Fig.3 ROC curves of score combination and biomarker combination

表 3: PCT、IL-6、APACHE || 和 SOFA 判断脓毒症预后的比较 Tab.3 Comparison of PCT,IL-6 APACHE | and SOFA in prognosis of sepsis

			V 2				
Variable	AUC	AUC95%CI	Critical value S	Sensitivity (%)	Specificity (%)	+PV (%)	-PV (%)
PCT	0.888	0.835-0.940	11.5	82. 5	83. 8	73. 2	89. 9
IL-6	0.848	0. 787-0. 910	11. 5 55. 5	82. 5	78. 6	65.8	89. 3
APACHE II	0.851	0.794-0.908	21.5	69. 8	90. 6	80.0	84.8

+PV:positive predictive predictive value; AUC: area under ROC curve;

0.694 - 0.839

Spearman 相关分析表明, PCT、IL-6、生物标记物组合与 APACHE II、SOFA、评分组合之间均呈正相关(P < 0.001,表4)。

56.0

80.0

71.8

2.5 评分与生物标记物相关性比较

0.766

表 4: 180 例患者评分和生物标记物的相关性

Tab.4 Correlation between scores and biomarkers in 180 patients

D	PCT		I	IL-6		Biomarker combination	
Parameter -	r	P	r	P	r	P	
APACHE II	0.866	< 0.001	0. 563	< 0.001	0.849	< 0.001	
SOFA	0.617	< 0.001	0.421	< 0.001	0.613	< 0.001	
Score combination	0.866	< 0.001	0.564	< 0.001	0.849	< 0.001	

3 讨论

临床上常用于判断脓毒症病情严重程度和预后的评分主 要有 APACHE II 评分、SOFA 评分、急诊脓毒症死亡风险评分 (MEDS)等。APACHE II 评分以患者的一般情况为基础,结合 多项急性生理学常规监测指标,并和年龄、基础疾病等综合分 析的一种疾病严重程度评分系统。该评分在ICU病房使用非 常广泛,常用于危重疾病如脓毒症、重症胰腺炎等。大量研 究均证实 APACHE II 评分为危重患者进行病情评价和预后判断 的首要选择^[10]。Stevens 等^[11] 采用 APACHE II 评分比较 ICU 和非 ICU 病房耐甲氧西林金黄色葡萄球菌 (MRSA) 感染患者, 结果证明 APACHE II 评分能有效判断 MRSA 患者的病死率。SOFA 评分简洁客观,主要用来评价多脏器功能障碍综合症(MODS) 的病情和预后。重症脓毒症患者常常出现器官功能障碍,因 此 SOFA 评分也常常用于判断包括脓毒症在内的危重疾病。Yu 等[12] 采用 9 种评分系统评价重症患者, 经分析认为 SOFA 评 分诊断重症患者有较高的敏感度和特异度。PCT 作为降钙素的 前体物质, 当机体遭受严重感染时, 就会被组织大量释放出来。 故 PCT 对脓毒症病情及预后具有一定的临床意义 [13]。Bauer 等 [14] 用 PCT 等多项生物标记物研究脓毒症患者后认为它们能 有效地诊断脓毒症。IL-6是一由T淋巴细胞、单核巨噬细胞 和纤维母细胞合成的促炎物质。正常状态下 IL-6 在血液中含 量较低且容易被检测,故其常作为判断脓毒症病情的生物标 记物之一。Hou 等 $^{[15]}$ 研究认为 IL-6 对判断脓毒症病情有一定的临床价值。

大量研究表明 APACHE II 评分、SOFA 评分等评分系统以 及 PCT、IL-6 等生物标记物对脓毒症病情和预后都有一定的 敏感度和特异度。APACHE II 评分和 SOFA 评分常在 ICU 领域 广泛运用。PCT、CRP 等生物标记物也常被用于判断脓毒症病 情及预后。但国内外较少报道比较评分系统与生物标记物相 关性来判断脓毒症预后。本研究观察和比较脓毒症生存组和 死亡组的一般情况、APACHE II 评分、SOFA 评分、PCT 和 IL-6 的差异, 发现生存组患者感染较轻。由于轻度感染诱导所产 生的炎症因子含量不高, 因此生存组并发症的发病率明显低 于死亡组。脓毒症患者病情越严重,感染往往也越严重。感 染刺激机体释放相关细胞因子,导致脓毒症相关生物标记物 与病情严重程度常呈正相关。脓毒症感染程度越高, 机体 抵抗力越差,患者预后越差。所以本研究 APACHE II 评分、 SOFA 评分、PCT 和 IL-6 在生存组和死亡组之间都有明显差 异。本研究中PCT的ROC曲线面积高于IL-6、APACHE II评分 和 SOFA 评分。机体正常时,血清 PCT 含量极低,当严重感染 时,PCT浓度在2-4h内急剧升高并在8-24h内达到高峰,可 达正常人数百倍。由于 PCT 变化率高, 所以在判断脓毒症疾 病严重程度和预后时,具有较高的准确性[16]。评分系统和生 物标记物相关性比较可以发现, APACHE II 评分、SOFA 评分和 PCT、IL-6两两之间均呈正相关。评分组合和生物标记物组合 也呈正相关。但通过 ROC 曲线对比却发现, 生物标记物的敏 感度和特异度普遍高于评分系统, 生物标记物组合也高于评 分系统组合。一方面,由于本研究为回顾性研究,生物标记 物所得数据真实客观,而 APACHE II 评分和 SOFA 评分具有主 观性,在查阅患者病史时主观评分不精确,所以评分系统的 准确性稍低于生物标记物。另一方面,脓毒症患者病情严重时, 血清生物标记物浓度会因为感染诱导而大量释放,而患者的 临床表现未必会随着病情加重而加重,在填写 APACHE II 评分 和 SOFA 评分时会产生误差,所以评分系统的准确性要低于生 物标记物。

综上所述,APACHE II 评分、SOFA 评分、PCT 和 IL-6 均对判断脓毒症预后有一定的临床意义。虽然评分系统与生物标记物具有相关性,但生物标记物的敏感度和特异度要高于评分系统。所以生物标记物可能比评分系统能更好地判断脓毒症患者预后情况。

[参考文献]

- [1] Markwart R, Condotta SA, Requardt RP, et al. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of naïve T-cells but no enduring cell-autonomous defects in T-cell function[J]. PLoS One, 2014, 9(12): e115094.
- [2] Tschaikowsky K,Hedw-Geissing M,Braun GG,et al. Predictive value of procalcitonin,interleukin-6 and C-reactive protein for survival in postoperative patients with severe sepsis[J]. J Crit Care,2011,39(1):195-199.
- [3] Gaieski DF,Edwards JM,Kallan MJ,et al. Benchmarking the incidence and mortality of severe sepsis in the United States[J].

- Crit Care Med, 2013, 41(5): 1167-1174.
- [4] Jiang L, Feng B, Gao D, et al. Plasma concentrations of copeptin, C-reactive protein and procalcitonin are positively correlated with APACHE II scores in patients with sepsis[J]. J Int Med Res,2015,43(2):188-195.
- [5] Zali AR, Seddighi AS, Seddighi A, et al. Comparison of the acute physiology and chronic health evaluation score (APACHE) II with GCS in predicting hospital mortality of neurosurgical intensive care unit patients[J]. Glob J Health Sci, 2012, 4(3):197-184.
- [6] Harbarth S,Holeckova K,Froidevaux C,et al.Disgnostic value of procalcitonin, interleukin-6,and interleukin-8 in critically ill patients admitted with suspected sepsis[J]. Am J Respir Crit Care Med,2001,164(3):396-402.
- [7] Wong HR, Walley KR, Pettilä V, et al. Comparing the prognostic performance of ASSIST to interleukin-6 and procalcitonin in patients with severesepsis or septic shock[J]. Biomarkers,2015,20(2):132-135.
- [8] Steinberger E, Hofer N, Resch B. Cord blood procalcitonin and intereukin-6 are highly sensitive and specific in the prediction of early-onsetsepsis in preterm infants[J]. Scand J Clin Lab Invest, 2014, 74(5):432-436.
- [9] Levy MM,Fink MP,Marshall JC,et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med,2003,31(4):1250-1256.
- [10] Naved SA, Siddiqui S, Khan FH. APACHE II score correlation with mortality and length of stay in an intensive care unit[J]. 1 Coll Physicians Surg Pak. 2011, 21(1):4-8.
- [11] Stevens V,Lodise TP,Tsuji B,et al. The utility of acute physiology and chronic health evaluation II scores for prediction of mortality among intensive care unit(ICU) and non-ICU patients with methicillin-resistant Staphylococcus aureus bacteremia[J]. Infect Control Hosp Epidemiol,2012,33(6):558-564.
- [12] Yu S,Leung S,Heo M,et al. Comparison of risk prediction scoring systems for ward patients: a retrospective nested case-control study[J]. Crit Care,2014,18(3):R132.
- [13] Wang HJ, Zhang PJ, Chen WJ, et al. Serum microRNA signatures identified by solexa sequencing predict sepsis patients' mortality:a prospective observational study[J]. PLoS One,2012,7(6):e38885.
- [14] Bauer PR,Kashyap R,League SC,et al. Diagnostic accuracy and clinical relevance of an inflammatory biomarker panel for sepsis in adult critically ill patients[J]. Diagn Microbiol Infect Dis,2015,pii:S0732-8893(15)00357-0.
- [15] Hou T, Huang D, Zeng R, et al. Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: a systematic review and meta-analysis[J]. Int J Clin Exp Med,2015,8(9):15238-15245.
- [16] Jekarl DW,Lee SY,Lee J,et a1. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis[J]. Diagn Microbiol Infect Dis,2013,75(4):342-347.